If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+6x-90=0
a = 1; b = 6; c = -90;
Δ = b2-4ac
Δ = 62-4·1·(-90)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{11}}{2*1}=\frac{-6-6\sqrt{11}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{11}}{2*1}=\frac{-6+6\sqrt{11}}{2} $
| -0.52x+0.22x=63 | | 6x+39x-5=9(5x+5) | | 0.57x-0.25x=9 | | 2(x+30)-3x=8-2(2x-5) | | P(x)=x^2-3x+2 | | 65=5x+4 | | 65=5x+2 | | 65=5x+9 | | 65=5x+7 | | 65=5x+3 | | 6=2x+x | | 57=7x+8 | | 57=7x+2 | | 57=7x+3 | | 57=7x-3 | | 28=-8v+6(v+2) | | 10(x+2)=4(-x-10) | | 4/25x=125/8 | | 670=7x+5 | | 670=7x+3 | | 670=7x+2 | | -7j+-8(3j-8)=-6j+164 | | 2x-5(x-2)=-8+5x-38 | | 28-4n=3+n | | 28x-7=2x+5 | | P=4x^2-64 | | 1.6-x=0.16-2.5 | | 725=2x+5 | | (3x+25)+(x-20)+x=180 | | 600=5x+5 | | 5680=9x-1 | | 2x+1.5x=9 |